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This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within
Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in
pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs
are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation
caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The
bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

1. Introduction

Different approaches for the quantum gravity have been
proposed in string theory and black hole physics to provide
a set of predictions for a minimum measurable length and
an essential modification of the Heisenberg uncertainty
principle (GUP) [1–11] and a modification in the funda-
mental commutation relation [𝑥

𝑖
, 𝑝
𝑗
]. According to string

theory, it has been found that strings cannot interact at
distances smaller than their size, which yields generalized
uncertainty principle [1]. From black hole physics [2, 3],
the uncertainty principle, Δ𝑥 ∼ ℏ/Δ𝑝, is modified at the
Planck energy scale when the corresponding Schwarzschild
radius is approximately equal to Compton wavelength at the
Planck scale. Higher energies result in a further increase of
the Schwarzschild radius, to yield Δ𝑥 ≈ ℓ2

𝑃𝑙
Δ𝑝/ℏ. The above

approaches alongwith a combination of thought experiments
and rigorous derivations suggest that the (GUP) holds at all
scales and is represented by the following [1–11]:
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where 𝑝2 = ∑
𝑗
𝑝
𝑗
𝑝
𝑗
, 𝛽 = 𝛽

0
/(𝑀
𝑝
𝑐)
2
= 𝛽
0
(ℓ
2

𝑝
/ℏ
2
), 𝑀
𝑝
is

Planck mass, and 𝑀
𝑝
𝑐
2 is Planck energy. It was shown in

[9] that inequality (1) is equivalent to the following modified
Heisenberg algebra:

[𝑥
𝑖
, 𝑝
𝑗
] = 𝑖ℏ (𝛿

𝑖𝑗
+ 𝛽𝛿
𝑖𝑗
𝑝
2
+ 2𝛽𝑝

𝑖
𝑝
𝑗
) . (2)

This form ensures, via the Jacobi identity, that [𝑥
𝑖
, 𝑥
𝑗
] = 0 =

[𝑝
𝑖
, 𝑝
𝑗
] [10].Differentminimal length scale scenarios inspired

by various approaches to the quantum gravity have been
reviewed in [12]. Apparently, this suggests a modification of
the physical momentum [9–11]

𝑝
𝑖
= 𝑝
0𝑖
(1 + 𝛽𝑝

2

0
) , (3)

while 𝑥
𝑖
= 𝑥
0𝑖
with 𝑥

0𝑖
; 𝑝
0𝑗
satisfies the canonical commu-

tation relations [𝑥
0𝑖
, 𝑝
0𝑗
] = 𝑖ℏ𝛿

𝑖𝑗
, such that 𝑝

0𝑖
= −𝑖ℏ𝜕/𝜕𝑥

0𝑖
,

where 𝑝 is the momentum satisfying (2). The upper bounds
on the parameter 𝛽 have been derived in [13, 14] and it
was found that it could predict an intermediate length scale
between Planck scale and electroweak scale. It was suggested
that these bounds can be measured using quantum optics
techniques and gravitational wave techniques in [15, 16]
which is considered as milestone in the quantum gravity
phenomenology. It is noteworthy that the thermodynamical
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phenomenological implications of GUP in quantum gases are
numerous, for example, [17, 18]. In [19] the quantum gravity
influences on the statistic properties classical nonrelativistic,
ultrarelativistic, and photon gases were addressed. Small cor-
rections to the energy and entropy at low temperatures were
found and some modifications to the equations of state are
employed. The authors considered two configurations. The
first is the white dwarf which is composed of a nonrelativistic
cold nuclei; the mass of the star was calculated. It is found
that there is a quantum gravity correction that depends on
the number density of the star that leads to an increase in the
mass of the star and the quantum gravity tends to resist the
collapse of the star. The other configuration is that the star
is almost composed of ultrarelativistic particles. They found
that the increase in the star energy leads to monotonical
blowup of Fermi pressure which resists the gravitational
collapse.

We will use this form of GUP (1) to investigate the
implications of the quantum gravity on statistical properties
of quantum gases. After redefining the new phase space we
will put the partition function in a form that is consistent
with GUP and then rewrite the thermodynamic properties
for quantum gases, namely, photons, nonrelativistic ideal
gases, and fermions in degenerate state. Using these results
we will follow the proposal which was investigated in [20] in
studying the stability ofmain-sequence stars andwhite dwarf.
Also a simple method is used to study the effect of quantum
gravity in a different stage of stellar evolution and a modified
mass-radius relation for the white dwarf is calculated and
boundaries in the quantum gravity perturbative terms will be
determined.

2. Statistical Mechanics and GUP

In this section we investigate the GUP modification in the
formalism of the grand-canonical ensemble. If we consider
𝑁 particles with energy states 𝐸

𝑖
, for each state there is 𝑛

𝑖

particles in that state.The grand-canonical partition function
is obtained from the sum over all of the states:

Z = ∑
𝑛𝑖

∏
𝑖

[𝑒
(𝜇−𝐸𝑖/𝐾𝐵𝑇)]

𝑛𝑖
, (4)

where 𝑇 is the temperature, 𝐾
𝐵
is the Boltzmann constant,

and 𝜇 is the chemical potential. The connection to thermo-
dynamics is obtained after introducing the partition function
defined as [21]

lnZ = ∑
𝑖

ln [1 + 𝑎𝑧𝑒−𝐸𝑖/𝐾𝐵𝑇] , (5)

where 𝑧 = exp(𝜇/𝐾
𝐵
𝑇) and the parameter 𝑎 takes value

depending on the considered particles. If they are fermions,
𝑎 takes +1 value, and if the considered particles are bosons, 𝑎
takes −1 value.

By considering large volume, the summation turns to
be ∑
𝑖
→ ∫𝑑

3
𝑥𝑑
3
𝑝/((2𝜋ℏ)

3
(1 + 𝛽𝑝

2
)
3
) where we are

considering the invariant phase space in the existence of
the GUP that has been derived in [22]. We should put the
grand canonical partition function for these systems in a form

consistent with GUP framework.TheGUP can be considered
in the phase space analysis by two equivalent pictures: (a)
considering deformed commutation relations (i.e., deformed
the measure of integration) simultaneously with the nonde-
formed Hamiltonian function or (b) calculating canonical
variables on the GUP-corrected phase space which satisfy the
standard commutative algebra (i.e., nondeformed standard
measure of integration), but the Hamiltonian function now
gets deformed. These two pictures are related to each other
by the Darboux theorem in which it is quite possible to
find canonical coordinates on the symplectic manifold which
satisfy standard Heisenberg algebra [23, 24]. In this paper we
are going to consider deformed measure of integration with
nondeformedHamiltonian function. Based on the new phase
space the partition function is

lnZ =
𝑉

(2𝜋ℏ)
3

𝑔

𝑎
∫ ln [1 + 𝑎𝑧𝑒−𝐸/𝑘𝐵𝑇]

𝑑
3
𝑝

(1 + 𝛽𝑝2)
3

(6)

with 𝐸 = (𝑝2𝑐2 +𝑚2𝑐4)1/2. Pressure, number of particles, and
internal energy will be determined by the relations

𝑃 = 𝐾
𝐵
𝑇
𝜕

𝜕𝑉
lnZ,

𝑛 = 𝐾
𝐵
𝑇
𝜕

𝜕𝜇
lnZ|𝑇,𝑉 ,

𝑈 = 𝐾
𝐵
𝑇
2 𝜕

𝜕𝑇
lnZ|𝑧,𝑉 .

(7)

We will expand all the terms that contain 𝛽 and we
will keep the terms that are proportional to ∼𝛽 only. This
approximation breaks down around maximum measurable
energies such that 𝛽𝑝2 ≈ 1. In this case we need an exact
solution. But one can trust the perturbative solution where
𝛽𝑝
2
≪ 1. Now we will use the modified partition function

to calculate the thermodynamics of photons, nonrelativistic
ideal gases, and degenerate fermions.

2.1. Photon Gas. For a gas of photons 𝑔 = 2, 𝑎 = −1, and
𝜇 = 0. The energy density is given, using (7), by

𝑢 =
𝑈

𝑉
=

1

𝜋2ℏ3
∫

𝐸

𝑒𝐸/𝐾𝐵𝑇 − 1

𝑝
2
𝑑𝑝

(1 + 𝛽𝑝2)
3
, (8)

where𝐸 = 𝑝𝑐. Use the approximation 1/(1+𝛽𝑝2)3 ≃ 1−3𝛽𝑝2;
one gets

𝑢 =
𝑐

𝜋2ℏ3
∫

𝑑𝑝

𝑒𝑐𝑝/𝐾𝐵𝑇 − 1
(𝑝
3
− 3𝛽𝑝

5
)

=
4𝜎

𝑐
𝑇
4
− 𝛽

8

21

𝜋
4
𝐾
6

𝐵

ℏ3𝑐5
𝑇
6
,

(9)

where 𝜎 = 𝜋
2
𝑘
4
/60ℏ
3
𝑐
2 is the Stefan-Boltzmann constant.

For 𝛽 = 0 one can recover the usual Stefan-Boltzmann law.
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And the pressure of system (7) is given by

𝑃 =
𝑐

𝜋2ℏ3
∫

𝑑𝑝

𝑒𝑐𝑝/𝐾𝑇 − 1
[
1

3
𝑝
3
−
3

5
𝛽𝑝
5
]

=
4𝜎

3𝑐
𝑇
4
− 𝛽

8

105

𝜋
4
𝐾
6

𝐵

ℏ3𝑐5
𝑇
6
.

(10)

It is clear that the modification in phase space decreases
the available number ofmicrostates, which holds the thermo-
dynamic properties and hence decreases the internal energy
and pressure of the system. In order to obtain the pressure-
energy density relation divide (10) by (9):

𝑃

𝑢
=
1

3
+ 𝛽

16

21
(
𝐾
𝐵
𝜋

𝑐
)
2

𝑇
2
. (11)

If we remove the quantum gravity effect we can recover
the usual relation 𝑢 = 3𝑃. In order to obtain the equation of
state (EOS) 𝑃 = 𝑃(𝑢) we first solve (9) for the temperature to
get

𝑇 = (
𝑐

4𝜎
)
1/4

𝑢
1/4
+ 𝛽

10

7
(
𝜋𝐾
𝐵

𝑐
)
2

(
𝑐

4𝜎
)
3/4

𝑢
3/4
. (12)

Substitute (12) into (11) to get the first order correction to the
EOS:

𝑃 =
𝑢

3
+ 𝛽

16

21
(
15𝜋
2
ℏ
3

𝑐
)

1/2

𝑢
3/2
. (13)

Equation (13) represents a modified equation of state due
to generalized uncertainty principle.

2.2. Nonrelativistic Ideal Gases. Let us now consider the effect
of quantum gravity on nonrelativistic ideal gases. In order
to do that the partition function for one particle with the
modified phase space is given by

𝑧
1
=

𝑉

2𝜋2ℏ3
∫ 𝑒
−𝑝
2
/(2𝑚𝐾𝐵𝑇)

𝑝
2
𝑑𝑝

(1 + 𝛽𝑝2)
3
. (14)

The total partition function is given by 𝑍 = (1/𝑁!)𝑧
𝑁

1

by which we can derive the free energy for the system with
the equation 𝐹 = 𝐾

𝐵
𝑇 ln𝑍. Using Stirling’s formula ln𝑁! =

𝑁 ln𝑁 −𝑁 we can determine the pressure

𝑃 = −
𝜕𝐹

𝜕𝑉

𝑇,𝑁
=
𝑁𝐾
𝐵
𝑇

𝑉
. (15)

So we recover the usual EOS for nonrelativistic ideal gas
𝑃 = 𝑛𝐾

𝐵
𝑇, where 𝑛 = 𝑁/𝑉 is the number density which

shows that the quantum gravity does not play here. The
same behavior is established in [23]. Suffice calculation of
the pressure at this point, which we need, and the other
thermodynamic properties of the nonrelativistic ideal gases
can be obtained easily by solving the integration in (14) and
then calculating the free energy.

2.3. Degenerate Fermion Gas. Fermions have a property that
atmost one can occupy each quantum state. At𝑇 = 0 all states
with energy less than Fermi energy level are occupied and all
states with greater energy are empty. So the total energy of
the system is the lowest possible consistent with the exclusion
principle.The energy of the highest occupied state at absolute
zero is the Fermi energy and corresponding momentum is
referred to as the Fermi momentum 𝑝

𝑓
. In this case the

distribution function goes to step function. According to
these assumptions and using (7) the particle number density
is given by

𝑛 =
1

𝜋2ℏ3
∫
𝑃𝑓

0

𝑝
2
𝑑𝑝

(1 + 𝛽𝑝2)
3
=

1

𝜋2ℏ3
[
1

3
𝑝
3

𝑓
− 𝛽

3

5
𝑝
5

𝑓
] . (16)

Solving this equation for Fermi momentum, one gets

𝑝
𝑓
= (3𝜋

2
ℏ
3
𝑛)
1/3

+ 𝛽
3

5
(3𝜋
2
ℏ
3
𝑛) . (17)

The second term ensures that the Fermi momentum
is increased due to the presence of quantum gravity and
hence Fermi energy. Also the energy density for fermions in
degenerate state is given by

𝑢 =
1

𝜋2ℏ3
∫
𝑃𝑓

0

[𝑝
2
𝑐
2
+ 𝑚
2
𝑐
4
]
1/2 𝑝

2
𝑑𝑝

(1 + 𝛽𝑝2)
3
. (18)

Using the substitutional

𝑝 = 𝑚𝑐 sinh𝑥 (19)

the energy density integration will be

𝑢 =
𝑚
4
𝑐
5

𝜋2ℏ3
∫
𝑥𝑓

0

[sinh2𝑥 + (1 − 3𝛽𝑚2𝑐2) sinh4𝑥

− 3𝛽𝑚
2
𝑐
2sinh6𝑥] 𝑑𝑥 = 𝑚

4
𝑐
5

𝜋2ℏ3
[𝐹
1
(𝑦) + (1

− 3𝛽𝑚
2
𝑐
2
) 𝐹
2
(𝑦) − 3𝛽𝑚

2
𝑐
2
𝐹
3
(𝑦)] ,

(20)

where

𝑦 =
𝑝
𝑓

𝑚𝑐
= sinh𝑥

𝑓
(21)

with

𝐹
1
(𝑦) = −

1

2
ln [𝑦 + √1 + 𝑦2] + 1

2
𝑦√1 + 𝑦2

𝐹
2
(𝑦) =

3

8
ln [𝑦 + √1 + 𝑦2]

+
1

4
𝑦√1 + 𝑦2 [𝑦

2
−
3

2
] .

𝐹
3
(𝑦) = −

5

16
ln [𝑦 + √1 + 𝑦2]

+ 𝑦√1 + 𝑦2 [
5

16
+ 𝑦
2
(
𝑦
2

6
−
5

24
)]

(22)
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By the same way, we can derive the pressure from (7);
after making use of the integration by parts and function
expansion, one finds that

𝑃 =
𝑐
2

𝜋2ℏ3
∫
𝑝𝑓

0

𝑑𝑝

[𝑝2𝑐2 + 𝑚2𝑐4]
1/2
[
1

3
𝑝
3
−
3

5
𝛽𝑝
5
]

=
𝑚
4
𝑐
5

𝜋2ℏ3
[
1

3
𝐹
2
(𝑦) −

3

5
𝛽𝑚
2
𝑐
2
𝐹
3
(𝑦)] .

(23)

Equation (23) represents the ground state pressure.There
is a considerable change due to the presence of the function
𝐹
3
(𝑦) and 𝑦 itself depends on modified Fermi momentum.

We should notice that the value of 𝑦 is increased due to the
increasing in Fermi momentum, this leads to a considerable
growing in the pressure (23). The change in pressure of the
radiation and degenerate fermions will affect the polytropic
relations for astroobjects. In the next section the modified
pressure effect in the some stars stability and some other
applications will be investigated exactly.

3. Applications to Astrophysical Objects

3.1. Main-Sequence Stars. Most main-sequence stars have
a mass in the range about 10 to 50 solar mass. They are
composed by a mixture of nonrelativistic gas and radiation
that are stood in hydrostatic equilibrium by gravity [25]. The
total pressure is 𝑃

𝑐
= 𝑃
𝑔
+ 𝑃
𝑟
, where 𝑃

𝑐
, 𝑃
𝑔
, and 𝑃

𝑟
are center

star, gas, and radiation pressure, respectively. We can write
𝛽
𝑐
= 𝑃
𝑔
/𝑃
𝑐
and 1 − 𝛽

𝑐
= 𝑃
𝑟
/𝑃
𝑐
. By definition (1 − 𝛽

𝑐
) and

𝛽
𝑐
are the fractional contribution of radiation and gas to the

central pressure of the star and both are less than one; then

𝑃
𝑔

𝛽
𝑐

=
𝑃
𝑟

1 − 𝛽
𝑐

. (24)

The classical gas pressure can be expressed, using (15), in
the form

𝑃
𝑔
=
𝜌
𝑐
𝐾
𝐵
𝑇

𝑚
. (25)

We used the relation 𝑛 = 𝜌
𝑐
/𝑚; 𝜌
𝑐
is the central density

of the star and 𝑚 is the average mass of the gas particle that
constructs the star defined as 𝑚 = 𝑢

𝑁
𝑚
𝑁
where 𝑢

𝑁
is the

mean molecular weight and 𝑚
𝑁
is the nucleon mass. Using

(10), (25) into (24), one finds that

𝜌
𝑐
𝐾
𝐵

𝛽
𝑐
𝑚
𝑇
𝑐
=

4𝜎

3𝑐 (1 − 𝛽
𝑐
)
𝑇
4

𝑐
−
8

105
𝛽

𝜋
4
𝐾
6

𝐵

ℏ3𝑐5 (1 − 𝛽
𝑐
)
𝑇
6

𝑐
, (26)

where 𝑇
𝑐
is the central temperature of the star. We can find

the temperature by solving the above equation:

𝑇
𝑐
= (

1 − 𝛽
𝑐

𝛽
𝑐
𝑚

3𝑐𝐾
𝐵

4𝜎
)

1/3

𝜌
1/3

𝑐

+ 𝛽
1

70

(1 − 𝛽
𝑐
)

𝛽
𝑐
𝑚

𝜋
4
𝐾
7

𝐵

ℏ3𝑐3𝜎2
𝜌
𝑐
.

(27)

Using this expression to calculate the star pressure from the
relation 𝑃

𝑐
= 𝑃
𝑔
/𝛽
𝑐
= (𝜌
𝑐
𝐾
𝐵
/𝛽
𝑐
𝑚)𝑇
𝑐
one gets

𝑃
𝑐
= 𝐾
1
𝜌
4/3

𝑐
+ 𝛽𝐾
2
𝜌
2

𝑐
= 𝑃
𝑠UP + 𝑝𝑠GUP, (28)

𝐾
1
=
(1 − 𝛽

𝑐
)
1/3

(𝛽
𝑐
)
4/3

(
3𝑐𝐾
4

𝐵

4𝜎𝑚
4
)

1/3

,

𝐾
2
=
1

70

(1 − 𝛽
𝑐
)

(𝛽
𝑐
)
2

𝜋
4
𝐾
8

𝐵

ℏ3𝑐3𝜎2𝑚
2
.

(29)

The first part of (28) is the ordinary polytropic relation
with a a polytropic exponent Γ = 4/3 (polytropic index 𝑛

𝑝
=

3) [26] perturbed by a polytrope Γ = 2 (polytropic index 𝑛
𝑝
=

1) where 𝑛
𝑝
= 1/(Γ − 1).

The best example may be used to estimate GUP pertur-
bation is our sun. If we assume that 𝛽

𝑐
is constant overall the

stars and its chemical composition is not changed so 𝑢
𝑁
is

constant. For our sun 1 − 𝛽
𝑐
= 10
−3 and 𝑢

𝑁
= 0.829 [27] and

central density 𝜌
𝑐
= 1.53 × 10

5 kg/m3; then

𝑝
𝑠GUP
𝑃
𝑠UP

= 1.8 × 10
−49
𝛽
0
. (30)

The perturbed pressure should not exceed the original
one such that 𝑝

𝑠GUP/𝑃𝑠UP ≪ 1, so this equation suggests that
the upper value of 𝛽

0
should be 𝛽

0
< 10
48. This bound is far

weaker than that set by electroweak measurements.
According to (28) the quantum gravity modifies the

polytropic relation by adding a new term proportional to 𝜌2.
This suggests a new modification in Lane-Emden equation
[28]. The modified Lane-Emden equation is established in
the appendix. Studying modified Lane-Emden equation and
its solution is not the scope of this paper so results that are
investigated by the this equationwill be postponed to another
research.

Main-Sequence Stars Stability. In order to discuss the stability
concept, the energy of a Newtonian polytrope systems with
pressure 𝑃 can be expressed in terms of the internal energy
and gravitational potential such that

𝐸 = 𝑘
1
𝑃𝑉 − 𝑘

2

𝐺𝑀
2

𝑅
, (31)

where 𝑘
1
and 𝑘
2
are constants,𝐺 is the gravitational constant,

and 𝑀 and 𝑅 are the mass and radius of the star. At hight
densities it is important to take into account the general
relativistic effects in star stability. To deal with it a general
relativistic correction term should be added to (31), in lowest
order approximation; namely, 𝐸corr = −𝑘

3
(𝐺/𝑐)
2
𝑀
7/3
𝜌
2/3

𝑐
,

where 𝑘
3
is constant that depends on the actual distribution

of matter. According to [27], for 𝑛
𝑃
= 3 polytrope, the

condition of stability is Γ > 4/3 + 2.25(𝐺𝑀/𝑐2𝑅). We can see
that addition of a relativistic correction contracts the region
of stability or increases the critical value of Γ. In our case
𝐺𝑀/𝑐

2
𝑅 ∼ 10

−6 so this correction can be neglected. So we
expect that the new term in a polytropic equation (28) with
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𝑛
𝑝
= 1, which has a positive contribution, will not affect the

problem of stability since Γ > 2.
Using (28) into (31) the energy ofmain-sequence starswill

be

𝐸 = 𝐶
1
𝑀𝜌
1/3

𝑐
+ 𝛽𝐶
2
𝑀𝜌
𝑐
− 𝑘
2
𝑀
5/3
𝜌
1/3

𝑐
, (32)

where 𝐶
1
and 𝐶

2
are constants. The mass𝑀 can be obtained

by using the equilibrium condition 𝜕𝐸/𝜕𝜌
𝑐
= 0; the result is

𝑀 = [
3

𝑘
3

(
1

3
𝐶
1
+ 𝛽𝐶
2
𝜌
2/3

𝑐
)]

3/2

. (33)

Then

𝑑 ln𝑀
𝑑 ln 𝜌
𝑐

= 𝛽
3𝐶
2

𝐶
1

𝜌
2/3

𝑐
. (34)

Equation (34) ensures that 𝑑 ln𝑀/𝑑 ln 𝜌
𝑐
> 0 which

is the stability condition [27] for main-sequence object.
These results show that the generalization process for the
uncertainty principle does not change the stability of the
main-sequence objects.

Minimum and MaximumMasses for Main-Sequence Stars. In
this part we will discuss the evolution stage of main-sequence
stars in the presence of quantum gravity to derive the
minimum and maximum masses of these objects. Initially,
in the stage of star forming, the star must has mass enough
to generate a central temperature which is high enough
for thermonuclear fusion. At this stage the central pressure
comes by the electrons and ions which are forming an ideal
classical gas; their pressure can be expressed as in (25). The
star will be made if this pressure is close to the pressure
needed to support the system. It is known that the upper limit
relation between the pressure and density at the center of the
star is given by [29]

𝑃
𝑐
≤ (

𝜋

6
)
1/3

𝐺𝜌
4/3

𝑐
𝑀
2/3
. (35)

This relation is valid for any homogeneous star in which
the mass is concentrated towards the center. Equating (25)
and (35) one can get the initial central temperature in this
stage:

𝐾
𝐵
𝑇
𝑐
≤ (

𝜋

6
)
1/3

𝑚𝐺𝜌
1/3

𝑐
𝑀
2/3
. (36)

We can see that the quantum gravity does not appear
in the picture. As shown in this equation the central tem-
perature will rise as the central density increases with star
contraction. The contracting temperature continues to rise
until the electrons at the center become fully degenerate and
occupy the lowest energy states in accordance with exclusion
principle. At this stage, at the center, the pressure comes from
the electrons that are in degenerate state plus the pressure
from the classical ions. Quantum gravity will not change the
classical ions pressure, according to (15), but a nonrelativistic
degenerate electrons pressure will change according to (23).

In nonrelativistic limit, where 𝑦 ≪ 1, the degenerate pressure
(23) will be

𝑃
non-relat
0

=
1

15

𝑚
4

𝑒
𝑐
4

𝜋2ℏ3
𝑦
5
−
3

35

𝑚
6

𝑒
𝑐
7

𝜋2ℏ3
𝑦
7
. (37)

Use (17), (21) in above equation and add the result to (15);
finally we can write the central pressure at this stage as

𝑃
𝑐
=

𝑎

5𝑚
𝑒

𝑛
5/3

𝑒
+ 𝛽

12𝑎
2

35𝑚
𝑒

𝑛
7/3

𝑒
+ 𝑛
𝑖
𝐾
𝐵
𝑇
𝑐
, (38)

where 𝑎 = (31/3𝜋2/3ℏ)2. The number density of the electrons
𝑛
𝑒
and ions 𝑛

𝑖
can be expressed in terms of central density,

simply 𝑛
𝑒
= 𝑛
𝑖
= 𝜌
𝑐
/𝑚
𝐻
, where 𝑚

𝐻
is the mass of hydrogen

atom. A hydrostatic pressure is achieved if this pressure
equals the pressure needed to support the mass (35). This
leads to the central temperature being as follows:

𝐾
𝐵
𝑇
𝑐
≤ (

𝜋

6
)
1/3

𝐺𝑚
𝑁
𝑀
2/3
𝜌
1/3

𝑐
−
𝑎

5𝑚
𝑒

(
𝜌
𝑐

𝑚
𝐻

)

2/3

− 𝛽
12𝑎
2

35𝑚
𝑒

(
𝜌
𝑐

𝑚
𝐻

)

4/3

.

(39)

The first term is associated with classical ions and second
and third terms with degenerate electrons.The last two terms
become important and are increasing with central density
until the temperature will cease to rise as the mass contracts.
From this equation we can find the maximum value of
temperature:

𝐾𝐵𝑇𝑐
max ≤ 𝑧𝑀

4/3
[1 −

60

7
𝛽𝑚
𝑒
𝑧𝑀
4/3
] , (40)

𝑧 =
5

4
(
𝜋

6
)
2/3 𝑚
𝑒

𝑎
𝑚
8/3

𝐻
𝐺
2
. (41)

Equation (40) proves that the maximum central tem-
perature decreases due to quantum gravity. The contracting
mass achieves stardom if that maximum central temperature
reaches ignition temperature for the thermonuclear fusion of
hydrogen. Denote this ignition temperature by 𝑇ign; then the
minimummass for the star will be given by

𝑀min ≥ (
𝐾
𝐵
𝑇ign

𝑧
)

3/4

[1 +
45

7
𝛽𝑚
𝑒
𝐾
𝐵
𝑇ign] . (42)

This relation shows that the quantum gravity effect
increases theminimummass of themain-sequence stars.The
approximation has ameaning if the second term in (42) is less
than unity. If we take the ignition temperature for hydrogen
to be about 1.5 × 106 K, this suggests that the upper value of
𝛽
0
< 10
47.

The situation is changed if the radiation pressure takes
a part in this stage of revolution. The star will be disrupted
if radiation becomes the dominant source for the internal
pressure. This property will set a limit to the mass of a main-
sequence star.The pressure at the center of hotmassive stars is
due to electrons and ions (as a classical gases) and radiation;
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the pressure that is produced by these species is derived in
(28). Comparing this with the pressure needed to support the
star (35) to get the maximummass, one finds that

(
𝜋

6
)
1/3

𝐺𝑀
2/3

max ≥ 𝐾1 + 𝛽𝐾2𝜌
2/3

𝑐
, (43)

which means that the maximummass is increased due to the
presence of quantum gravity. This increase depends on the
central density. Again the second term in the right-hand side
of inequality (43) should be less than the first; this suggests
that 𝛽

0
< 10
48.

3.2.White Dwarfs. Thewhite dwarfs consist ofHelium atoms
that are almost in an ionization state. The temperature of the
star is about 107 K, so the electrons are in a relativistic energy
regime and can be considered in a complete degenerate state
and the Helium nuclei do not play a part, in first order
approximation, in the dynamic of the system. Now we will
determine the effect of GUP on white dwarf radius according
to pressure modification expressed in (23). If the number of
Heliumnuclei is𝑁/2 then there are𝑁 electrons. Suppose that
𝑀 = 2𝑁𝑚

𝑝
is the mass of the star, so the particle density of

the electron is

𝑛
𝑠
=
3𝑀

8𝜋𝑚
𝑝

1

𝑅3
. (44)

Using (17), (44) into (21), one gets

𝑦 =
𝑀
1/3

𝑅
+
3

5
𝛽𝑚
2

𝑒
𝑐
2𝑀

𝑅
3
, (45)

𝑀 =
9𝜋

8

𝑀

𝑚
𝑝

,

𝑅 =
𝑚
𝑒
𝑐

ℏ
𝑅,

(46)

where 𝑅 is the radius of the star and 𝑚
𝑝
is the proton mass.

The equilibrium configuration of white dwarf is caused by
the pressure of the degenerate electrons against Newtonian
gravitational collapse which is due to the nuclei, whichmeans
that

𝑃
0
=
𝜅

4𝜋

𝐺𝑀
2

𝑅4
= 𝐾
𝑀
2

𝑅
4
,

𝐾

=
𝜅𝐺

4𝜋
(
8𝑚
𝑝

9𝜋
)

2

(
𝑚
𝑒
𝑐

ℏ
)
4

.

(47)

We have two extreme cases as follows.
(i) When the electron gas is in a low density, nonrelativis-

tic dynamics may be used such that 𝑦 ≪ 1, and (23) will lead
to

𝑃
0
=
4

5
𝐾𝑦
5
−
36

35
𝛽𝑚
2

𝑒
𝑐
2
𝐾𝑦
7
,

𝐾 =
𝑚
𝑒
𝑐
2

12𝜋2
(
𝑚
𝑒
𝑐

ℏ
)
3

.

(48)

Equating (47) and (48), we got the equation

𝑅
3

−
4

5

𝐾

𝐾
𝑀
−1/3

𝑅
2

−
48

35
𝛽𝑚
2

𝑒
𝑐
2𝐾


𝐾
𝑀
1/3

= 0. (49)

The solution of that equation is

𝑅 ≃
4

5

𝐾

𝐾
𝑀
−1/3

+
15

7
𝛽𝑚
2

𝑒
𝑐
2𝐾


𝐾
𝑀. (50)

This equation shows that the radius of the star is increas-
ing; the elevation depends on the mass of the star. The used
approximation is true if the second term in the right-hand
side of (50) is much less than the first one; this will put a limit
in the upper value of 𝛽

0
such that it should be 𝛽

0
< 10
44; we

used a white dwarf mass𝑀 = 0.41𝑀
⊙
[30].

(ii) When the electron gas is in a high density, that
relativistic effect comes to play strongly such that 𝑦 ≫ 1. We
can write

𝑃
0
= 𝐾 (𝑦

4
− 𝑦
2
) − 𝛽

18

5
𝐾𝑚
2

𝑒
𝑐
2
(
𝑦
6

3
−
𝑦
4

4
) . (51)

Using (51) into (47) and simplifying, then

𝑅
4

+ [
𝐾


𝐾
𝑀
4/3

− (1 −
3

10
𝛽𝑚
2

𝑒
𝑐
2
)𝑀
2/3

]𝑅
2

−
6

5
𝛽𝑚
2

𝑒
𝑐
2
𝑀
4/3

= 0.

(52)

The solution of that equation, keeping only the terms that
proportional to ∼𝛽, is

𝑅 ≃ 𝑅
0
[1 + 𝛽

3

10

𝑚
2

𝑒
𝑐
2

𝑅
2

0

(2
𝑀
4/3

𝑅
2

0

−
1

2
𝑀
2/3

)] , (53)

where

𝑅
2

0
= 𝑀
2/3

−
𝐾


𝐾
𝑀
4/3

. (54)

Using (46) into (54) and solving for 𝑅 and letting 𝑅 →

𝑅Ch, one gets

𝑅Ch =
(9𝜋)
1/3

2

ℏ

𝑚
𝑒
𝑐
(
𝑀

𝑚
𝑝

)

1/3

[1 − (
𝑀

𝑀Ch
)

2/3

]

1/2

,

𝑀Ch =
9 (3𝜋)

1/2

64𝜅
(
ℏ𝑐

𝐺𝑚2
𝑝

)

3/2

𝑚
𝑝
.

(55)

𝑅Ch is the unmodified white dwarf radius or Chan-
drasekhar radius limit and 𝑀Ch is the Chandrasekhar limit
mass, of order 1.44𝑀

⊙
. First part of (53) is the Chandrasekhar

radius and the second term is the radius correction due to
GUP affect. These analyses show that the increasing in star
radius depends on [1 − (𝑀/𝑀Ch)

2/3
]
−1 which formally goes

to infinity as𝑀 → 𝑀Ch. It is clear that the quantum gravity
effect becomes significant when mass of the white dwarf
gets very close to the Chandrasekhar limit in high density
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stars. Equations (23), (50), and (53) attract attention to a
noticeable point that the growing in star radius ensures that
quantum gravity resists gravitational collapse by increasing
the electrons degeneracy pressure. These results are consis-
tentwith that established in [19].Our approximationwill have
a meaning if the second term in the right-hand side in (53)
is less than one; this puts an upper limit for 𝛽

0
such that

𝛽
0
< 10
43. We have used𝑀 = 0.59𝑀

⊙
[30].

We should also notice that, in the limit 𝑦 ≫ 1, in
ultrarelativistic regime, the function 𝐹

3
(𝑦) behaves like ∼𝑦6

which almost goes like 𝜌2. This result is consistent with
polytrope behavior in which Γ = 2, that is, corresponding
to stability range of the star. So we can conclude that this
approach of quantum gravity does not produce any instability
to white dwarfs.

4. Discussion

Various approaches to quantum gravity such as string the-
ory, black hole physics, and doubly special relativity pre-
dict a considerable modification in Heisenberg uncertainty
principle to be a generalized uncertainty principle. This
modification leads to a change in the energy-momentum
dispersion relation and in the physical phase space. In this
paper we studied the modification due to a generalized
uncertainty principle (1) in the statistical and thermodynamic
dynamic properties for photons, nonrelativistic ideal gases
and degenerate fermions. There is a considerable decrease
in the number of accessible microstates in quantum gravity
background.This approach leads to a decrease in the internal
energy and pressure of photon gas. Pressure and internal
energy of fermions in degenerate state are increased and
pressure of nonrelativistic ideal gases is not changed. These
results are used in studying the stability of themain-sequence
stars and white dwarfs. It is found that this approach of
quantum gravity does not produce any changes in stars
stability.

We follow a very simple way to study the effect of
quantum gravity in a different stage of stellar evolution. It
is found that there is no change in pressure or temperature
in the initial stage where the pressure is coming from
classical ions. In the second stage, after stardom contracting,
where degenerate electrons control the central pressure, the
quantum gravity leads to a decrease in the central maximum
temperature and an increase in the minimum and maximum
masses of the main-sequence stars. This result shows that the
quantum gravity has an effect on the building process of the
universe and it will have a more strong effect in highly dense
objects.

A mass-radius relation for white dwarf is also investi-
gated. The results show that there is an elevation in the star
radius that is proportional to the mass of the star. For the
case of high dense stars the elevation in the radius goes
to infinity as the mass of the star reaches Chandrasekhar
limit. This means that quantum gravity resists gravitational
collapse. This result goes in parallel with that found in [19].
Unfortunately, quantum gravity behaves in a different way
from the prediction of the usual model for white dwarf.
The current observation indicates that white dwarfs have

smaller radii than theoretical predictions [30–32]. This is not
consistent with our results. But this result may be reasonable
if we add this perturbed term, which comes from quantum
gravity, to the other perturbed terms that are coming from
other physical aspects such as Coulomb corrections, lattice
energy, correction due to rotation, and magnetic field (which
may be much larger than the correction due to GUP) and
more realistic density distribution for electronic gas.The sum
of all these terms may be consistent with the current data.

On the other hand, implications of the GUP in various
fields, such as high energy physics, cosmology, and black
holes, have been studied. In [13] potential experimental
signatures in some familiar quantum systems are examined.
𝛽
0
is a numerical parameter that quantifies the modification

strength if we assume that parameter is of the order of unity.
This assumption renders quantum gravity effects too small to
be measured [13]. But the 𝛽

0
dependent terms are important

when energies (momenta) are comparable to Planck energy
(momenta) and length is comparable to the Planck length.
If we cancel this choice, the current experiments predict
large upper bounds on it, which are compatible with current
observations. It is agreed that such an intermediate length
scale, 𝑙inter ≃ 𝑙𝑃𝑙√𝛽0, cannot exceed the electroweak length
scale ∼1017𝑙

𝑃𝑙
[13]. This means that 𝛽

0
≤ 10
34. The authors in

[13, 14] determined a bound in 𝛽
0
parameter which proves

that GUP could be measured in a low energy system like
Landau levels, Lamb shift, potential barrier, and potential
step. They calculated the intermediate length scales such that
𝑙inter ≃ 10

18
𝑙
𝑃𝑙
, 10
25
𝑙
𝑃𝑙
, and 1010𝑙

𝑃𝑙
of which the first two are

far bigger than the electroweak scale and the last is smaller
but may get further constrained with increased accuracies.
In this paper the boundary values of 𝛽

0
parameter, in cases

of main-sequence stars, are 1048, 1047, and 1048 and those
fromwhite dwarf are 1044 and 1043.These can be converted to
intermediate length scales, 𝑙inter ≈ 10

24
𝑙
𝑃𝑙
for main-sequence

stars and 𝑙inter ≈ 10
22
𝑙
𝑃𝑙
for white dwarf. They are far bigger

than the electroweak scale but it is approximately compatible
with the results addressed by [14] in one case, and it can be
considered reasonable values in the astrophysical regime.

Appendix

In general the gravitational field inside the star can be
described by a gravitational potential 𝜙, which is a solution
of the Poisson equation

∇
2
𝜙 = 4𝜋𝐺𝜌. (A.1)

For spherical symmetry Poisson equation reduces to

1

𝑟2
𝑑

𝑑𝑟
(𝑟
2 𝑑𝜙

𝑑𝑟
) = 4𝜋𝐺𝜌. (A.2)

In hydrostatic equilibrium, besides (A.2), it requires

𝑑𝑃

𝑑𝑟
= −

𝑑𝜙

𝑑𝑟
𝜌. (A.3)
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For a homogeneous gaseous sphere, if we assume that
the pressure of the star can be calculated by the modified
polytropic relation,

𝑃 = 𝐾
1
𝜌
Γ1 + 𝛽𝐾

2
𝜌
Γ2 . (A.4)

The prototype constants 𝐾
1
and 𝐾

2
are fixed and can be

calculated from nature constants. If Γ
1
and Γ
2
are not equal to

unity, use (A.4) into (A.3) and integrate with the boundary
conditions 𝜙 = 0 and 𝜌 = 0 at the surface of the sphere; one
gets

𝜙 = −𝐾
1
(1 + 𝑛

1
) 𝜌
1/𝑛1 − 𝛽𝐾

2
(1 + 𝑛

2
) 𝜌
1/𝑛2 . (A.5)

Solving this equation for 𝜌, keeping only the terms
proportional to 𝛽 and using 𝑛

𝑗
= 1/(Γ

𝑗
− 1), then

𝜌 = [
−𝜙

𝐾
1
(1 + 𝑛

1
)
]

𝑛1

− 𝛽
𝑛
1
𝐾
2
(1 + 𝑛

2
)

𝐾
1
(1 + 𝑛

1
)
[

−𝜙

𝐾
1
(1 + 𝑛

1
)
]

𝑚

,

(A.6)

where

𝑚 =
𝑛
1

𝑛
2

+ 𝑛
1
− 1. (A.7)

Using 𝜌 from (A.6) into (A.2) one gets

𝑑
2
𝜙

𝑑𝑟2
+
2

𝑟

𝑑𝜙

𝑑𝑟

= 4𝜋𝐺[
−𝜙

𝐾
1
(1 + 𝑛

1
)
]

𝑛1

− 4𝜋𝐺𝛽
𝑛
1
𝐾
2
(1 + 𝑛

2
)

𝐾
1
(1 + 𝑛

1
)
[

−𝜙

𝐾
1
(1 + 𝑛

1
)
]

𝑚

.

(A.8)

Now let us define

𝑧 = 𝐴𝑟,

𝐴
2
=

4𝜋𝐺

𝐾
𝑛1

1
(1 + 𝑛

1
)
𝑛1
(−𝜙
𝑐
)
𝑛1−1 ,

𝜔 =
𝜙

𝜙
𝑐

,

(A.9)

where 𝜙
𝑐
is the potential at the center; it can be defined, like

(A.5), as

𝜙
𝑐
= −𝐾
1
(1 + 𝑛

1
) 𝜌
1/𝑛1

𝑐
− 𝛽𝐾
2
(1 + 𝑛

2
) 𝜌
1/𝑛2

𝑐
. (A.10)

Using (A.5), (A.10) to define 𝜔 as a function of density,
one finds that

𝜔 =
𝜙

𝜙
𝑐

= (
𝜌

𝜌
𝑐

)

1/𝑛1

+ 𝛽
𝐾
2
(1 + 𝑛

2
)

𝐾
1
(1 + 𝑛

1
)
(
𝜌
𝑛1

𝜌
𝑛2
𝑐

)

1/𝑛1𝑛2

⋅ [1 − (
𝜌

𝜌
𝑐

)

(𝑛2−𝑛1)/𝑛1𝑛2

] .

(A.11)

Using (A.9) into (A.8), one gets

𝑑
2
𝜔

𝑑𝑧2
+
2

𝑧

𝑑𝜔

𝑑𝑧
+ 𝜔
𝑛1 + 𝜂𝜔

𝑚
= 0, (A.12)

where

𝜂 =
𝛽𝑛
1
𝐾
2
(1 + 𝑛

2
)

𝜙
𝑐

(−𝜙
𝑐

𝐴
2

4𝜋𝐺
)

1/𝑛2

. (A.13)

𝜂 is a dimensionless quantity. Equation (A.12) is the modified
Lane-Emden equation.We are interested in solutions that are
finite at the center, 𝑧 = 0. So this equation can be solved with
the boundary conditions 𝜔(0) = 1 and 𝜔(0) = 1. 𝜔 can be
calculated from (A.12) and it can be used to determine the
mass, density, and pressure of the astrophysical objects as a
function of a radius.
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